关于K-Means介绍很多,还不清楚可以查一些相关资料。
个人对其实现步骤简单总结为4步:
1.选出k值,随机出k个起始质心点。
2.分别计算每个点和k个起始质点之间的距离,就近归类。 3.最终中心点集可以划分为k类,分别计算每类中新的中心点。4.重复2,3步骤对所有点进行归类,如果当所有分类的质心点不再改变,则最终收敛。
下面贴代码。
1.入口类,基本读取数据源进行训练然后输出。 数据源文件和源码后面会补上。
package com.hyr.kmeans;import au.com.bytecode.opencsv.CSVReader;import java.io.FileReader;import java.io.FileWriter;import java.io.IOException;import java.util.ArrayList;import java.util.List;public class KmeansMain { public static void main(String[] args) throws IOException { // 读取数据源文件 CSVReader reader = new CSVReader(new FileReader("src/main/resources/data.csv")); // 数据源 FileWriter writer = new FileWriter("src/main/resources/out.csv"); ListmyEntries = reader.readAll(); // 6.8, 12.6 // 转换数据点集 List points = new ArrayList (); // 数据点集 for (String[] entry : myEntries) { points.add(new Point(Float.parseFloat(entry[0]), Float.parseFloat(entry[1]))); } int k = 6; // K值 int type = 1; KmeansModel model = Kmeans.run(points, k, type); writer.write("==================== K is " + model.getK() + " , Object Funcion Value is " + model.getOfv() + " , calc_distance_type is " + model.getCalc_distance_type() + " ====================\n"); int i = 0; for (Cluster cluster : model.getClusters()) { i++; writer.write("==================== classification " + i + " ====================\n"); for (Point point : cluster.getPoints()) { writer.write(point.toString() + "\n"); } writer.write("\n"); writer.write("centroid is " + cluster.getCentroid().toString()); writer.write("\n\n"); } writer.close(); }}
2.最终生成的模型类,也就是最终训练好的结果。K值,计算的点距离类型以及object function value值。
package com.hyr.kmeans;import java.util.ArrayList;import java.util.List;public class KmeansModel { private Listclusters = new ArrayList (); private Double ofv; private int k; // k值 private int calc_distance_type; public KmeansModel(List clusters, Double ofv, int k, int calc_distance_type) { this.clusters = clusters; this.ofv = ofv; this.k = k; this.calc_distance_type = calc_distance_type; } public List getClusters() { return clusters; } public Double getOfv() { return ofv; } public int getK() { return k; } public int getCalc_distance_type() { return calc_distance_type; }}
3.数据集点对象,包含点的维度,代码里只给出了x轴,y轴二维。以及点的距离计算。通过类型选择距离公式。给出了几种常用的距离公式。
package com.hyr.kmeans;public class Point { private Float x; // x 轴 private Float y; // y 轴 public Point(Float x, Float y) { this.x = x; this.y = y; } public Float getX() { return x; } public void setX(Float x) { this.x = x; } public Float getY() { return y; } public void setY(Float y) { this.y = y; } @Override public String toString() { return "Point{" + "x=" + x + ", y=" + y + '}'; } /** * 计算距离 * * @param centroid 质心点 * @param type * @return */ public Double calculateDistance(Point centroid, int type) { // TODO Double result = null; switch (type) { case 1: result = calcL1Distance(centroid); break; case 2: result = calcCanberraDistance(centroid); break; case 3: result = calcEuclidianDistance(centroid); break; } return result; } /* 计算距离公式 */ private Double calcL1Distance(Point centroid) { double res = 0; res = Math.abs(getX() - centroid.getX()) + Math.abs(getY() - centroid.getY()); return res / (double) 2; } private double calcEuclidianDistance(Point centroid) { return Math.sqrt(Math.pow((centroid.getX() - getX()), 2) + Math.pow((centroid.getY() - getY()), 2)); } private double calcCanberraDistance(Point centroid) { double res = 0; res = Math.abs(getX() - centroid.getX()) / (Math.abs(getX()) + Math.abs(centroid.getX())) + Math.abs(getY() - centroid.getY()) / (Math.abs(getY()) + Math.abs(centroid.getY())); return res / (double) 2; } @Override public boolean equals(Object obj) { Point other = (Point) obj; if (getX().equals(other.getX()) && getY().equals(other.getY())) { return true; } return false; }}
4.训练后最终得到的分类。包含该分类的质点,属于该分类的点集合该分类是否收敛。
package com.hyr.kmeans;import java.util.ArrayList;import java.util.List;public class Cluster { private Listpoints = new ArrayList (); // 属于该分类的点集 private Point centroid; // 该分类的中心质点 private boolean isConvergence = false; public Point getCentroid() { return centroid; } public void setCentroid(Point centroid) { this.centroid = centroid; } @Override public String toString() { return centroid.toString(); } public List getPoints() { return points; } public void setPoints(List points) { this.points = points; } public void initPoint() { points.clear(); } public boolean isConvergence() { return isConvergence; } public void setConvergence(boolean convergence) { isConvergence = convergence; }}
5.K-Meams训练类。按照上面所说四个步骤不断进行训练。
package com.hyr.kmeans;import java.util.ArrayList;import java.util.List;import java.util.Random;public class Kmeans { /** * kmeans * * @param points 数据集 * @param k K值 * @param k 计算距离方式 */ public static KmeansModel run(Listpoints, int k, int type) { // 初始化质心点 List clusters = initCentroides(points, k); while (!checkConvergence(clusters)) { // 所有分类是否全部收敛 // 1.计算距离对每个点进行分类 // 2.判断质心点是否改变,未改变则该分类已经收敛 // 3.重新生成质心点 initClusters(clusters); // 重置分类中的点 classifyPoint(points, clusters, type);// 计算距离进行分类 recalcularCentroides(clusters); // 重新计算质心点 } // 计算目标函数值 Double ofv = calcularObjetiFuncionValue(clusters); KmeansModel kmeansModel = new KmeansModel(clusters, ofv, k, type); return kmeansModel; } /** * 初始化k个质心点 * * @param points 点集 * @param k K值 * @return 分类集合对象 */ private static List initCentroides(List points, Integer k) { List centroides = new ArrayList (); // 求出数据集的范围(找出所有点的x最小、最大和y最小、最大坐标。) Float max_X = Float.NEGATIVE_INFINITY; Float max_Y = Float.NEGATIVE_INFINITY; Float min_X = Float.POSITIVE_INFINITY; Float min_Y = Float.POSITIVE_INFINITY; for (Point point : points) { max_X = max_X < point.getX() ? point.getX() : max_X; max_Y = max_Y < point.getY() ? point.getY() : max_Y; min_X = min_X > point.getX() ? point.getX() : min_X; min_Y = min_Y > point.getY() ? point.getY() : min_Y; } System.out.println("min_X" + min_X + ",max_X:" + max_X + ",min_Y" + min_Y + ",max_Y" + max_Y); // 在范围内随机初始化k个质心点 Random random = new Random(); // 随机初始化k个中心点 for (int i = 0; i < k; i++) { float x = random.nextFloat() * (max_X - min_X) + min_X; float y = random.nextFloat() * (max_Y - min_Y) + min_X; Cluster c = new Cluster(); Point centroide = new Point(x, y); // 初始化的随机中心点 c.setCentroid(centroide); centroides.add(c); } return centroides; } /** * 重新计算质心点 * * @param clusters */ private static void recalcularCentroides(List clusters) { for (Cluster c : clusters) { if (c.getPoints().isEmpty()) { c.setConvergence(true); continue; } // 求均值,作为新的质心点 Float x; Float y; Float sum_x = 0f; Float sum_y = 0f; for (Point point : c.getPoints()) { sum_x += point.getX(); sum_y += point.getY(); } x = sum_x / c.getPoints().size(); y = sum_y / c.getPoints().size(); Point nuevoCentroide = new Point(x, y); // 新的质心点 if (nuevoCentroide.equals(c.getCentroid())) { // 如果质心点不再改变 则该分类已经收敛 c.setConvergence(true); } else { c.setCentroid(nuevoCentroide); } } } /** * 计算距离,对点集进行分类 * * @param points 点集 * @param clusters 分类 * @param type 计算距离方式 */ private static void classifyPoint(List points, List clusters, int type) { for (Point point : points) { Cluster masCercano = clusters.get(0); // 该点计算距离后所属的分类 Double minDistancia = Double.MAX_VALUE; // 最小距离 for (Cluster cluster : clusters) { Double distancia = point.calculateDistance(cluster.getCentroid(), type); // 点和每个分类质心点的距离 if (minDistancia > distancia) { // 得到该点和k个质心点最小的距离 minDistancia = distancia; masCercano = cluster; // 得到该点的分类 } } masCercano.getPoints().add(point); // 将该点添加到距离最近的分类中 } } private static void initClusters(List clusters) { for (Cluster cluster : clusters) { cluster.initPoint(); } } /** * 检查收敛 * * @param clusters * @return */ private static boolean checkConvergence(List clusters) { for (Cluster cluster : clusters) { if (!cluster.isConvergence()) { return false; } } return true; } /** * 计算目标函数值 * * @param clusters * @return */ private static Double calcularObjetiFuncionValue(List clusters) { Double ofv = 0d; for (Cluster cluster : clusters) { for (Point point : cluster.getPoints()) { int type = 1; ofv += point.calculateDistance(cluster.getCentroid(), type); } } return ofv; }}
最终训练结果:
==================== K is 6 , Object Funcion Value is 21.82857036590576 , calc_distance_type is 3 ======================================== classification 1 ====================Point{x=3.5, y=12.5}centroid is Point{x=3.5, y=12.5}==================== classification 2 ====================Point{x=6.8, y=12.6}Point{x=7.8, y=12.2}Point{x=8.2, y=11.1}Point{x=9.6, y=11.1}centroid is Point{x=8.1, y=11.75}==================== classification 3 ====================Point{x=4.4, y=6.5}Point{x=4.8, y=1.1}Point{x=5.3, y=6.4}Point{x=6.6, y=7.7}Point{x=8.2, y=4.5}Point{x=8.4, y=6.9}Point{x=9.0, y=3.4}centroid is Point{x=6.671428, y=5.2142863}==================== classification 4 ====================Point{x=6.0, y=19.9}Point{x=6.2, y=18.5}Point{x=5.3, y=19.4}Point{x=7.6, y=17.4}centroid is Point{x=6.275, y=18.800001}==================== classification 5 ====================Point{x=0.8, y=9.8}Point{x=1.2, y=11.6}Point{x=2.8, y=9.6}Point{x=3.8, y=9.9}centroid is Point{x=2.15, y=10.225}==================== classification 6 ====================Point{x=6.1, y=14.3}centroid is Point{x=6.1, y=14.3}
代码下载地址:
http://download.csdn.net/download/huangyueranbbc/10267041
github:
https://github.com/huangyueranbbc/KmeansDemo